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1 Objectives

1. Understand the concept of Poisson distribution.

2. Understand the concept of simple and multiple Poisson regression models.

3. Apply the models on data sets and interpret the results.

2 Poisson Distribution

� Basically, we are dealing with count data.

� A Poisson distribution (Fleiss et al., 2003) is de�ned as

P (Y = y|µ) =
e−µµy

y!

for non-negative integers y = 0, 1, 2, ..., µ > 0.

� Y is a Poisson random variable.

� The parameter µ is the mean of Y .

� This relationship between Y and μ can be written as Y ∼ Poisson(µ) i.e. read as Y follows
Poisson distribution with mean µ.

� Poisson distribution comes from the binomial distribution (Rice, 1995) i.e. limit of the binomial
distribution as the number of trials n approaches in�nity and probability of success p approaches
zero, so as np = µ (n = number of trials/samples; p = probability of success) → Read my note
Probability Distribution to understand this better.

� In other words, the number of event is very small as compared to the denominator, thus the
p/proportion/percentage is very small, e.g. 0.000000123.

� Properties

Mean(Y ) = V ar(Y ) = µ

� Graphs of Poisson probability mass function with di�erent p:

Excel �le � Probability Distribution.xls > Poisson (also in poisson.R)

� It follows the assumptions of the Poisson process (Daniel, 1995):

1. The occurrences of the events are independent. The occurrence of an event in an interval of
space or time does not a�ect the probability of second occurrence of the event in the same
or di�erent interval.

2. In�nite number of occurrences of the event is possible in the interval.

3. Probability of a single occurrence of the event in an interval is proportionate to interval
length.

4. In a very small portion of the interval, probability of more than one occurrence of the event
is negligible.

� Example 2.1:

Probability of Y = y

Suppose the number of death due to motor vehicle accidents per day in Malaysia is on average
17.2 and it was found that the daily distribution follows Poisson distribution.

What is the probability that any randomly selected day will be the one with 10 death?
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� Example 2.2:

Probability of Y ≤ y

What is the probability that any randomly selected day will be the one with less than 11 death?

� Example 2.3:

Probability of Y > y

What is the probability that any randomly selected day will be more than 10 death?

� Using R: poisson.R

3 Simple Poisson Regression

� Let say Y is the Poisson count of some events e.g. number of accidents per month, or new HIV
cases per year etc.

� Suppose the count is somehow associated with some factors X s, e.g. gender, IVDU status, age
etc.

� We want to relate the Y with the X. Mean Y can be linked with X by

lnE(Y |X) = β0 + β1X

or its equivalent equation
E(Y |X) = eβ0+β1X = eβ0eβ1X

*E(Y) = expected value of Y or mean of Y; E(Y|X) = conditional mean of Y given X. Remember
mean of Y = E(Y) = μ.

� For a simple case of exposure X = 0, 1, for reference/non-exposed group X = 0,

lnE(Y |X = 0) = β0

E(Y |X = 0) = eβ0

thus the exponent of β0 is the mean of Y when X = 0.
For exposed group X = 1,

lnE(Y |X = 1) = β0 + β1(1) = β0 + β1

E(Y |X = 0) = eβ0+β1 = eβ0eβ1

thus the exponent of β0 + β1 is the mean of Y when X = 1.
Then, to obtain the increase/di�erence in mean of Y with the change in the exposure status,
which is the exponent of β1

E(Y |X = 1)

E(Y |X = 0)
=
eβ0eβ1

eβ0
= eβ1

usually called the rate ratio, RR.
The same concept is also applicable whenever the X is numerical, in which it re�ects RR for
x1 − x0 = ∆ unit change in X,

RR =
E(Y |X = x1)

E(Y |X = x0)
=
eβ0eβ1(x1)

eβ0]eβ1(x0)
= eβ1−β0 = eβ1∆

or for 1 unit change in X,
RR = eβ1(1) = eβ1

� Example 3.1, count data: poisson.R
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� In medicine, it is more common to describe the count in term of prevalence, incidence, person-
years i.e the rate. The equation has to be modi�ed to include the denominator/person-years
a(X) by,

E(Y |X) = a(X) eβ0+β1X

lnE(Y |X) = ln a(X) + β0 + β1X

the ln a(X) is speci�cally called the o�set. This will be speci�ed when we �t rate data.

� Example 3.2, rate data: poisson.R

4 Multiple Poisson Regression

� Recall our equation for simple Poisson regression,

lnE(Y |X) = ln µ = β0 + β1X

which can be extended as

lnE(Y |X) = ln µ = β0 + β1X1 + · · ·+ βp−1Xp−1 = β0 +
∑

βp−1Xp−1

where the X (in bold) denotes a collection of X s. p is the number of estimated parameters. We
minus 1 in the subscript since p also includes the intercept β0, thus p− 1 is the number of X s.

� The rate ratio, RR is,

RR = eβp−1

� Similarly, to include the o�set

lnE(Y |X) = ln a(X) + β0 +
∑

βp−1Xp−1

� Now βj (i.e. the speci�c β coe�cient) is interpreted similarly to the simple regression case, while
holding all other variables constant, or adjusted/controlling for the other variables.

� Similar to other multiple regressions,

� create dummy variables for a categorical variable with > 2 categories. However, it is au-
tomatically created in R, if the variable is speci�ed as a factor. (i.e. using the factor()

function)

� also consider the e�ect of two-way interaction terms in the model.

5 Model-building Steps for Multiple Poisson Regression

1. Variable selection.

(a) Univariable analysis.

� Determine the signi�cance of the variables by

� Wald's test.

� LR test.

(b) Multivariable analysis.

i. Fit using selected variables.

� All variables P -value < .25.

� Clinically important variables
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ii. Fit a smaller model by removing non-signi�cant variables.

(c) Interactions among variables.

� Among clinically plausible pairs.

2. Model �t assessment.

(a) Goodness-of-�t.

i. Chi-square goodness-of-�t.

� In R, based on residual deviance (poisgof() function).

� df = n− p
� P -value > 0.05 indicates good �t.

ii. Model-to-model AIC comparison.

iii. Scaled Pearson chi-square statistic.

� Pearson chi-square statistic is given as

χ2
P =

∑ (Yi − µ̂i)2

µ̂i

with df = n− p.
� Scaled Pearson chi-square statitic = χ2

P /df . The closer the value is to 1, the better
is the �t Fleiss et al. (2003). Large value indicates *overdispersion problem (i.e.
V AR(Y ) > Mean(Y )).

� We have to calculate manually, but easy with R. Yi is the observed counts, µ̂i
is the �tted/predicted counts, obtained by model$fitted or predicted(model)

functions.

(b) Regression diagnostics.

� We may use the standardized residuals, obtained by rstandard() function. Since it is
in form of standardized z score, we may use speci�c cuto� e.g. > 1.96 (α = .05) to >
3.89 (α = .0001).
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